CHE611: Experimental Techniques/Instrumentation for Catalysis Research

Program and Course	Chemical Engineering	
Code	CHE611	
Course Title	Experimental Techniques/Instrumentation for Catalysis Research	
Credit Hours	3	
Instructor	Simo Pehkonen	
Contact Information	spehkonen@masdar.ac.ae	
Office Hours	TBA	
Bulletin Course	Fundamental theories of reaction rates. Determination of rate	
Description	parameters using various analytical techniques such as UV-VIS, GC,	
	GC-MS, FTIR, etc. Analysis of rate data and complex reaction	
	networks. Analytical chemistry of catalytic reactions.	
Pre-requisites	CHE503, CHE610, or equivalent	
Co-requisites		
Course Objectives	After completing this course students will be able to:	
(Learning Outcomes	Measure reaction kinetics using widely available analytical tools	
of the Course)	• Specify the mechanism, rate expressions, and models needed for heterogeneous reactors.	
	Synthesize detailed reaction networks for catalytic reactions on solid catalyst surfaces, such as zeolites and TiO2	

Week	Course Topics and Contents	Readings
1	Review of homogeneous reactions	Class Notes and papers
2	Chemistry and mechanisms of homogeneous	Class Notes and papers
	reactions	
3	Review of analytical equipment to be used	Class Notes
4	Data Analysis and Error Analysis, Lab 1 on	Class Notes
	homogeneous 2 nd order reaction via UV-VIS.	
5		Class Notes
6	Homogeneous catalyst experiment, Lab 2	Class Notes
7		Class Notes
8	Reactions on solid surfaces	Class Notes
9	Catalytic chemistry I	Class Notes
10	Heterogeneous catalyst experiment, Lab 3	Class Notes
11	Heterogeneous catalysis and kinetics	Class Notes
12	Heterogeneous catalysis and kinetics II	Class Notes
13	Lab 4, energy related experiment on fuels	Class Notes
14	Theory of Phase Transfer Catalysis	Class Notes
15	Phase-Transfer Catalysis Experiment, Lab 5	Class Notes

Relationship of course objectives to program outcomes		
Program	Demonstrate appropriate depth and breadth of knowledge that is at the frontier	
Outcome	of their disciplines	
Program	Use skills of interdisciplinary scholarship and research to integrate multiple	
Outcome	perspectives	

Out-of-class assignments	
Homework	Three homework assignments based on the experiments performed in the lab.

Course Grading	
Homework	15%
Labs (and lab reports)	5x15% (five lab experiments every other week)
Class Participation	10%
Total	100 %

Class/Laboratory schedule and Methodology		
Class	The class meets 15 weeks, 1 lecture Every other week, 90 minutes each,	
	laboratory component, 3 hours every other week.	
Laboratory		
Teaching and	A combination of white board use, Power-point slide presentation, and interactive	
learning	class discussions to encourage student participation and enhance the learning.	
methodologies		

Course Materials	
Textbooks	None
Recommended	1. B.C. Gates, J.R. Katzer and G.C.A Schuit; <i>Chemistry of Catalytic</i>
Ref. Readings	Processes, McGraw-Hill (1979)
Instructional	A course website will be set at the beginning of the semester where all course
material and	necessary material will be posted including homework assignments and solutions.
resources	