MEG612: Advanced Convection and Two-phase Heat Transfer

Course Title	Advanced Convection and Two-phase Heat Transfer
Course Code	MEG612
Credit Hours	3
Pre-requisites (if any)	MEG501 fluid mechanics, MEG 507 Advanced Heat Transfer,
	MEG511 Advanced Engineering Mathematics.
Co-requisites (is any)	None
Name of Faculty	
E-mail of Faculty	
Office hours of Faculty	TBD
Brief Course Description	Advanced treatment of fundamental aspects of convection and 2- phase heat transfer. Topics covered include: conservation laws, laminar and turbulent convection, mass transfer including phase change and moving boundary problems. Problems and examples include theory and applications drawn from a spectrum of engineering design and manufacturing problems.
Learning Outcomes of the Course	 Student will gain a deeper understanding of fluid-dynamic mechanisms involved in convection and two-phase heat transfer. Solution techniques involving first and second-order ODEs will be mastered as well as problems requiring PDEs solved via separation of variables Student will be equipped with the analytical and model synthesis skills needed to apply the fundamentals to a wide variety of complex engineering problems.

Week	Course Topics and Contents
1	Review Eulerian and Lagrangian reference; Conservation of mass, momentum, energy
2	Laminar Convection: inviscid, viscous flow; Velocity, temperature profiles;
3	Convection review; Heat transfer coefficient; origins of correlations
4	Integral Method: Momentum, Energy Integral;
5	Internal Flow: Laminar, Fully-Developed Flow in Tubes
6	Natural Convection: Scaling; Integral Method; Correlations
7	Turbulence, Eddy Diffusivity; Heat transfer in turbulent flow;
8	Cause and onset of turbulence; Quiz 1;
9	Laminar Condensation on a Vertical Surface; Subcooling; Generalized Laminar Condensation
10	Wavy Laminar and Turbulent Condensation; Dropwise condensation
11	Nucleate Boiling; Critical heat flux; Film Boiling; Bubble Growth;
12	Forced Convection Boiling and Condensation—external and internal;
13	presence of low vapor-pressure liquid, non-condensing gas
14	Melting and solidification; moving boundary problems
15	Three-phase problems; packed beds with evaporation & condensation
16	Review; Quiz 2

Relationship of course objectives to IDDP program outcomes		
Program Outcome 1	Demonstrate appropriate depth and breadth of knowledge that is at the frontier	
-	of their disciplines	
Program Outcome 2	Use interdisciplinary skills of process system engineering to integrate multiple	
	perspectives for advanced energy research	
Program Outcome 3	Understand and value diverse approaches to solving critical problems in	
	research and to creating new knowledge judged by international standards	
Program Outcome 4	Work effectively in a multidisciplinary collaborative environment using highly	
_	developed cognitive and creative expert skills and intellectual independence	

Out-of-class assignments and	PS1 – Introduction and Conservation Eqns. (week 2)
dues dates for submission	PS2 – Laminar forced convection flow (week 3)
	PS3 – Natural convection (week 5)
	PS4 – Turbulence (week 7)
	PS5 – Condensation (week 8)
	PS6 – Boiling (week 10)
	PS7 – Forced condensation/boiling in tubes(week 12)
	PS8 – three-phase heat transfer (week 13)
Methods and dates of student	Class/tutorial participation (10%); Quiz 1 (30%); Quiz 2 (30%);
evaluation, including relative	Problem Sets 30%.
weight of various assessment	Quiz 1: Natural & Forced Convection, Integral methods (week 8)
methods in determining course	Quiz 2: Boiling, Condensation, Freezing, Melting, 3-phase (week
grade	16)
Teaching and learning	Emphasis is on underlying principles—e.g. molecular basis of
methodologies	continuum view and fluid dynamic basis of heat transfer correlations
	and analogies—to provide a deeper understanding of thermofluid
	processes that can be applied to situations where correlations do not
	exist. Weekly tutorials will give the student practice in problem
	solving techniques. Problem sets and tests further motivate the
	student to apply first principles in deriving results that cannot be
	found in handbooks.
Main course texts	Heat Transfer, A.F. Mills; A Heat Transfer Textbook, J. H. Lienhard
Recommended readings	Kuo, Sindo. Transport Phenomena and Materials Processing, Wiley
	Spiegel, M.R., 1999. Advanced Mathematics for Engineers and
	Spiegel, M.R., 1999. Advanced Mathematics for Engineers and Scientists, Schaum's
	Spiegel, M.R., 1999. Advanced Mathematics for Engineers and Scientists, Schaum's Heat and Mass Transfer, A.F.Mills, 1995, Irwin
	Spiegel, M.R., 1999. Advanced Mathematics for Engineers and Scientists, Schaum's Heat and Mass Transfer, A.F.Mills, 1995, Irwin Viscous Fluid Flow, F. M. White, 1991, McGraw-Hill
	Spiegel, M.R., 1999. Advanced Mathematics for Engineers and Scientists, Schaum's Heat and Mass Transfer, A.F.Mills, 1995, Irwin Viscous Fluid Flow, F. M. White, 1991, McGraw-Hill Convective Heat and Mass Transfer, W.M. Kays and M.E.
	Spiegel, M.R., 1999. Advanced Mathematics for Engineers and Scientists, Schaum's Heat and Mass Transfer, A.F.Mills, 1995, Irwin Viscous Fluid Flow, F. M. White, 1991, McGraw-Hill Convective Heat and Mass Transfer, W.M. Kays and M.E. Crawford, 1993, McGraw-Hill