Course Title	Thermal and Mechanical Properties of Materials
Course Code	MSE510
Credit Hours	3
Pre-requisites (if any)	Undergraduate in materials science or mechanical engineering,
	or instructor approval
Co-requisites (if any)	
Name of Faculty	Dr Mahieddine Emziane – Associate Professor (Part I)
	Dr Raed Hashaikeh – Associate Professor (Part II)
E-mail of Faculty	memziane@masdar.ac.ae
	rhashaikeh@masdar.ac.ae
E-mail of Faculty	memziane@masdar.ac.ae; rhashaikeh@masdar.ac.ae
Office hours of Faculty	Open
Brief Course Description	Thermal and mechanical properties of various materials such as
	metals, semiconductors, ceramics, polymers and composites.
	Correlations of these properties with: (1) their internal structures
	(atomic, molecular, crystalline, micro-and macro); (2) processing and;
	(3) service conditions (mechanical and thermal).
	Case studies drawn from a variety of real applications including metals
	and alloys, semiconductor devices, heat storage, energy conversion,
	thin film technology, biomaterials, and composites.
Course Objectives	1-Understanding, from a microstructural point of view, the thermal
	properties of materials and related applications.
	2-To develop a fundamental understanding about the mechanical
	behavior of materials by relating the continuum descriptions to the
	microscopic and or atomistic mechanisms.
	3- Define the basic physical principles underlying the thermal and
	mechanical properties of materials.
	4- Explain the relationship between the microscopic structure and the
	macroscopic thermal and mechanical properties of materials.
	5- Discuss the behavior of metals under applied loads, the atomic-scale origin for specific aspects of stress-strain responses.
	6-Discuss the anticipated thermal and mechanical properties of
	materials as a function of their fabrication, processing conditions and
	service conditions.
	7- Distinguish between the plastic behaviors of crystalline and non-
	crystalline materials.
	Crystalline materials.

Relationship of course to program outcomes		
Outcome 2	Successfully apply advanced concepts of materials engineering to the analysis,	
	design and development of materials, devices, systems, and processes to meet	
	desired needs of society professionally and ethically.	
Outcome 4	Be continuously aware of contemporary issues and research opportunities/challenges in the field of materials engineering as related to energy and sustainability and engage in life-long learning in the field and in the fundamentals of other related disciplines.	
Outcome 5	Use advanced materials characterization techniques, skills, and modern scientific and	
	engineering tools.	
Outcome 6	Communicate effectively in written and oral form, both, individually and as a	

member of a multidisciplinary team.

Week	Course Topics and Contents		
Part 1: T	Part 1: Thermal Properties		
1	Introduction, specific heat, thermal conductivity		
2	Thermal expansion, thermal stress, thermal stability		
3	Thermal radiation, emissivity, thermal diffusivity		
4	Relationship between structure and thermal properties of materials		
5	Experimental methods for thermal analysis of materials		
6	Case studies: Phase change materials, thermochromic and thermoelectric materials, etc.		
7	Review and First exam		
Part 2: Mechanical Properties			
8	Stress and Strain		
9	Elasticity		
10	Mid semester break		
11	Plasticity		
12	Experimental methods Lab week		
13	Crystallography/Defects in Crystalline Materials		
14	Dislocations Theory/ Crystallographic Slip		
15	Composite Materials/Second Exam.		
16	Project presentations and reports due.		

Out-of-class assignments and	Weekly homework and reading assignments.
dues dates for submission	
Methods and dates of student	Homeworks: 30%
evaluation, including relative	Mid-term exam: 20%
weight of various assessment	Final exam: 20%
methods in determining course	Individual Course project: 30%
grade	
Teaching and learning methodologies	2 Lectures (1.5 hour each) and 1 hour weekly for tutorials if needed.
Main course texts	- T.H. Courtney, <i>Mechanical Behavior of Materials</i> , Waveland Press, 2 nd Edition, 2000, 733 pages, ISBN: 1577664256.
	- G. Grimvall, <i>Thermophysical Properties of Materials</i> , North Holland, 2 nd Edition, 1999, 424 pages, ISBN 0444827943.
	- William F. Hosford, <i>Mechanical Behavior of Materials</i> , Cambridge University Press, 2005, 425 pages, ISBN: 9780521846707.
Recommended readings	- G.E. Dieter, <i>Mechanical Metallurgy</i> , McGraw Hill, 3 rd Edition, 1986, ISBN 0-07-100406-8.
	- N. E. Dowling, <i>Mechanical Behavior of Materials</i> , Pearson Prentice Hall, 3 rd Edition, 2007, 912 pages, ISBN: 0131863126

Instructional materials and	OCW @ MIT, and other resources TBA.
resources	